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int happy_array[10];

Arrays in C and The Land of Possibilities



  

● Contiguously allocated objects of the same element type.
● We can iterate over it through indexes from 0 to N - 1, where N 

is the maximum number of elements in the array.

Arrays in C and The Land of Possibilities

int happy_array[10];
indexes: [0-9]



  

● Contiguously allocated objects of the same element type.
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● Contiguously allocated objects of the same element type.
● We can iterate over it through indexes from 0 to N - 1, where N 

is the maximum number of elements in the array.
● However, C doesn’t enforce array’s boundaries.
● It’s up to the developers to enforce them.
● Otherwise, you arrive in The Land of Possibilities (a.k.a. UB). 

Arrays in C and The Land of Possibilities

int happy_array[10];
indexes: [0-9]



  

miserable_array[ -1 ]

Arrays in C and The Land of Possibilities



  

Trailing arrays in the kernel
– Arrays declared at the end of a structure.

Trailing arrays

struct trailing {
...
some members;
int happy_array[10];

};



  

● Usually blobs of raw data (of any type).
● Space is allocated at run-time.
● Their contents are usually described through a header.
● drivers/firmware/google/vpd.c:30:

Trailing arrays as Variable Length Objects (VLOs)

struct vpd_cbmem {
        u32 magic;
        u32 version;
        u32 ro_size;
        u32 rw_size;
        u8  blob[];
};



  

– Flexible array
● Trailing array as VLO.
● Total size is determined at run-time. 

– Flexible structure
● Structure that contains a flexible array. 

Flexible arrays & flexible structures

struct flex_struct {
...
size_t count;
struct foo flex_array[];

};



  

Flexible-array variants



  

Ambiguous flex-array declarations.
– Fake flexible arrays.

● One-element arrays.
● Zero-length arrays.

– True flexible arrays.
● “Modern” C99 flexible-array member.
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– Fake flexible arrays.
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Ambiguous flex-array declarations.
– Fake flexible arrays.

● One-element arrays (buggy hack).
● Always “contributes” with sizeof-one-element to the size 

of the enclosing structure.
● Potential source of off-by-one bugs.

Flexible-array variants

struct ancient {
...
size_t count;
struct foo anxious_array[1];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * (p->count - 1);
alloc_size = struct_size(p, anxious_array, p->count - 1); 



  

Ambiguous flex-array declarations.
– Fake flexible arrays.

● Need to audit every use of sizeof(*p)
● Is struct ancient being used inside another struct?
● Need to audit every use of sizeof(struct foo)
● Does the original code contains OBO issues?

Flexible-array variants

struct ancient {
...
size_t count;
struct foo anxious_array[1];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * (p->count - 1);
alloc_size = struct_size(p, anxious_array, p->count - 1); 



  

Ambiguous flex-array declarations.
– Fake flexible arrays.

● Zero-length arrays (GNU extension).
● They don’t contribute to the size of the flex struct.
● Slightly less buggy, but still...

Flexible-array variants

struct old {
…
size_t count;
struct foo unhappy_array[0];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * p->count;
alloc_size = struct_size(p, unhappy_array, p->count); 



  

Ambiguous flex-array declarations.
– True flexible arrays.

● Flexible-array member (C99).
● The last member of an otherwise non-empty structure.
● The compiler enforces this (unlike in the case of [1] & [0])

Flexible-array variants

struct modern {
...
size_t count;
struct foo happy_array[];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * p->count;
alloc_size = struct_size(p, happy_array, p->count); 



  

sizeof() & The Tale of the Three Trailing Arrays.
Problems with ambiguous flexible-array variants
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sizeof() & The Tale of the Three Trailing Arrays.
● sizeof() returns different results.
● And that’s another source of problems.
● Found multiple issues in the kernel.

Problems with ambiguous flexible-array variants

sizeof(flex_struct->one_element_array) == size-of-element-type

sizeof(flex_struct->zero_length_array) == 0

sizeof(flex_struct->flex_array_member) == ? /* Error */



  

The Land of Possibilities. ;-)
Problems with ambiguous flexible-array variants



  

The Land of Possibilities. :-)
● First flexible array transformation in the KSPP.
● 76497732932f ("cxgb3/l2t: Fix undefined behaviour")

Problems with ambiguous flexible-array variants

https://git.kernel.org/linus/76497732932f


  

The Land of Possibilities. :-)
● First flexible array transformation in the KSPP.
● 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
● Bug introduced in 2011. Fixed in 2019.

Problems with ambiguous flexible-array variants

https://git.kernel.org/linus/76497732932f


  

Ambiguity is the enemy.

Problems with ambiguous flexible-array variants



  

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations



  

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations

● Directly indexing flexible arrays is not uncommon.
● We had to fix multiple out-of-bounds issues in fake

flexible arrays ([0] and [1] trailing arrays). 
● Of course, almost all of them were false positives.
● However, they needed to be fixed before enabling

-Warray-bounds.



  

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations
– Some examples:

● This one very simple and straight-forward.
● Commit c1e4726f465440

https://git.kernel.org/linus/c1e4726f465440


  

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations
– Some examples:

● Others a bit more elaborate.
● Commit 39107e8577ad

https://git.kernel.org/linus/39107e8577ad
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-Warray-bounds and flexible-array transformations
– Some examples:

● Others a bit more elaborate.
● Commit 39107e8577ad

https://git.kernel.org/linus/39107e8577ad


  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Common use of memcpy() and flex arrays.

struct flex_struct {
...
size_t count;
struct foo flex_array[];

} *p;

...

memcpy(p->flex_array, &source, SOME_SIZE);



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Uses __builtin_object_size() to determine the size of both 

source and destination.
– Under CONFIG_FORTIFY_SOURCE=y



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

__builtin_object_size(flex_struct->flex_array_member, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 if cannot determine the size of the object.
● The size of a flexible-array member cannot be 

determined (it’s an object of incomplete type).

__builtin_object_size(flex_struct->flex_array_member, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 if cannot determine the size of the object.
● The size of a flexible-array member cannot be 

determined (it’s an object of incomplete type).

OK; but what about fake flexible arrays?
Those do have a size.



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.

__builtin_object_size(flex_struct->one_element_array, 1) == -1

__builtin_object_size(flex_struct->zero_length_array, 1) == -1

__builtin_object_size(flex_struct->flex_array_member, 1) == -1
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Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.
● A bit confusing, isn’t it?

__builtin_object_size(flex_struct->one_element_array, 1) == -1
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Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.
● A bit confusing, isn’t it?

__builtin_object_size(flex_struct->one_element_array, 1) == -1
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Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

What is going on?!

__builtin_object_size(any_struct->any_trailing_array, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

memcpy() is not currently able to sanity-
check trailing arrays at all.

__builtin_object_size(any_struct->any_trailing_array, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

A case for:
“Go fix the compiler!”



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all trailing arrays.
● Definitely need to fix the compiler. :-/

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

__builtin_object_size(any_struct->any_trailing_array, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all trailing arrays.
● Definitely need to fix the compiler. :-/
● sizeof() is the only sane one. :-)

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

__builtin_object_size(any_struct->any_trailing_array, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

Wait. But why, exactly?

__builtin_object_size(any_struct->any_trailing_array, 1) == -1



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays
– BSD sockaddr (sys/socket.h)

● char sa_data[14]
● #define SOCK_MAXADDRLEN 255

/*
 * Structure used by kernel to store most
 * addresses.
 */
struct sockaddr {

unsigned char sa_len; /* total length */
sa_family_t sa_family; /* address family */
char sa_data[14]; /* actually longer; address value */

};
#define SOCK_MAXADDRLEN 255 /* longest possible addresses */



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays
– https://reviews.llvm.org/D126864

“Some code consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f632498307d22e10fab0704548b270b15f1e1e but it prevents evaluation of
builtin_object_size and builtin_dynamic_object_size in some legit cases.”

https://reviews.llvm.org/D126864


  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flex arrays.

So, what do we do?
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Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flex arrays. What do we do?



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flex arrays. What do we do?

● Make flexible-array declarations unambiguous.
● Fix the compiler: 

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836


  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Kernel: Make flexible-array declarations unambiguous.

● Get rid of fake flexible arrays.
● Only C99 flexible-array members should be used as 

flexible arrays.



  

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Kernel: Make flexible array declarations unambiguous.

● Get rid of fake flexible arrays.
● Only C99 flexible-array members should be used as 

flexible arrays.
– Compiler: Fix it.

● Fix __builtin_object_size()
● Add new option -fstrict-flex-arrays[=n]



  

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.
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-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1
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● __bos(flex_struct→one_element_array, 1) == -1
● __bos(flex_struct→zero_length_array, 1)   == -1
● __bos(flex_struct→flex_array_member, 1) == -1



  

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1

● -fsfa=1 → Only [1], [0] and [ ] are treated as flex arrays.
● __bos(flex_struct→one_element_array, 1) == -1
● __bos(flex_struct→zero_length_array, 1)   == -1
● __bos(flex_struct→flex_array_member, 1) == -1

● -fsfa=2 → Only [0] and [ ] are treated as flex arrays.
● __bos(flex_struct→zero_length_array, 1)   == -1
● __bos(flex_struct→flex_array_member, 1) == -1



  

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1

● -fsfa=1 → Only [1], [0] and [ ] are treated as flex arrays.
● __bos(flex_struct→one_element_array, 1) == -1
● __bos(flex_struct→zero_length_array, 1)   == -1
● __bos(flex_struct→flex_array_member, 1) == -1

● -fsfa=2 → Only [0] and [ ] are treated as flex arrays.
● __bos(flex_struct→zero_length_array, 1)   == -1
● __bos(flex_struct→flex_array_member, 1) == -1

● -fsfa=3 → Only [ ] is treated as flex array. (GCC only).
● __bos(flex_struct→flex_array_member, 1) == -1



  

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

When will we have nice things?



  

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
– Need to finish transforming ALL fake flexible arrays into

flexible-array members.
– Need to enable -fstrict-flex-arrays=3
– Then memcpy() will be finally able check for out-of-bounds

on trailing arrays and ALL arrays of fixed size.



  

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
– Need to finish transforming ALL fake flexible arrays into

flexible-array members.
– Need to enable -fstrict-flex-arrays=3
– Then memcpy() will be finally able check for out-of-bounds

on trailing arrays and ALL arrays of fixed size. Yeeeii!!! :-)



  

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

OK. Now we know how to gain
bounds-checking on trailing

arrays of fixed size. :)



  

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

And what about bounds-checking on
flexible-array members?



  

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
– We need a new attribute.
– __attribute__((__element_count__(member))) ? 

struct bounded_flex_struct {
                ...
                size_t elements;
                struct foo flex_array[]

__attribute__((__element_count__(elements)));
};



  

The case of UAPI



  

The case of UAPI
One-element arrays in UAPI – First attempts.
– Duplicate the original struct within a union.
– Flexible-array will be used by kernel-space.
– One-element array will be used by user-space.

 struct ip_msfilter {
-       __be32          imsf_multiaddr;
-       __be32          imsf_interface;
-       __u32           imsf_fmode;
-       __u32           imsf_numsrc;
-       __be32          imsf_slist[1];
+       union {
+               struct {
+                       __be32          imsf_multiaddr_aux;
+                       __be32          imsf_interface_aux;
+                       __u32           imsf_fmode_aux;
+                       __u32           imsf_numsrc_aux;
+                       __be32          imsf_slist[1];
+               };
+               struct {
+                       __be32          imsf_multiaddr;
+                       __be32          imsf_interface;
+                       __u32           imsf_fmode;
+                       __u32           imsf_numsrc;
+                       __be32          imsf_slist_flex[];
+               };
+       };
 };



  

The case of UAPI
One-element arrays in UAPI – Better code.
– Just use the __DECLARE_FLEX_ARRAY() helper in a union.

struct ip_msfilter {
        __be32          imsf_multiaddr;
        __be32          imsf_interface;
        __u32           imsf_fmode;
        __u32           imsf_numsrc;
        union {
                __be32          imsf_slist[1];
                __DECLARE_FLEX_ARRAY(__be32, imsf_slist_flex);
        };
};



  

The case of UAPI
One-element arrays in UAPI – Better code.
– Just use the __DECLARE_FLEX_ARRAY() helper in a union.
– The bad news is that the sizeof(flex_struct) will remain the 

same.

struct ip_msfilter {
        __be32          imsf_multiaddr;
        __be32          imsf_interface;
        __u32           imsf_fmode;
        __u32           imsf_numsrc;
        union {
                __be32          imsf_slist[1];
                __DECLARE_FLEX_ARRAY(__be32, imsf_slist_flex);
        };
};



  

Flexible array transformations in the Linux kernel 
Current status

● Zero-length arrays mostly transformed (including UAPI).
● However, we cannot prevent new ones from being 

introduced. Please, don’t introduce them. :)
● One-element arrays are still in progress.
● Auditing them demand a lot more work and time.
● Need to make sure there are no important differences

between executables (before and after changes).
● objdump, Ghidra, BinDiff and custom diffing tools

to the rescue.



  

Flexible arrays transformations in the Linux kernel 
Conclusions

● We need to remove problematic ambiguity from the kernel.
● Flexible-array transformations together with

-fstrict-flex-arrays=3 are an important step forward.
● The security of the kernel can be significantly improved.
● Vulnerabilities discovered over the last years could’ve

been prevented with the most recent memcpy() and 
FORTIFY_SOURCE updates.

● We have a clear vision about how to gain
bounds-checking on ALL trailing arrays, fixed and flexible.



  

Thank you! :)

Gustavo A. R. Silva
gustavoars@kernel.org

@embeddedgus
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