
 1

Flexible-Array Transformations and
Array-bounds checking

Gustavo A. R. Silva
gustavoars@kernel.org

@embeddedgus

Supported by The Linux Foundation &
Google

Linux Security Summit Europe
Sep 15, 2022

Dublin, Ireland

mailto:gustavoars@kernel.org
https://twitter.com/embeddedgus

Who am I?

● Embedded Systems.
● RTOS & Embedded Linux.

Who am I?

● Embedded Systems.
● RTOS & Embedded Linux.
● Upstream first – 6 years.
● Kernel Engineer & Maintainer.
● Kernel Self-Protection Project (KSPP).
● GOSST - Linux kernel division.

Who am I?

● Embedded Systems.
● RTOS & Embedded Linux.
● Upstream first – 6 years.
● Kernel Engineer & Maintainer.
● Kernel Self-Protection Project (KSPP).
● GOSST - Linux kernel division.
● Volunteer at @kidsoncomputers

https://twitter.com/kidsoncomputers

● Introduction
– Arrays in C and The Land of Possibilities.
– Trailing arrays as Variable Length Objects (VLOs).
– Flexible arrays and Flexible structures.

● Flexible-Array Transformations & Array-bounds checking
– Ambiguous flexible-array declarations and problems.
– Gaining bounds-checking on trailing arrays.
– The case of UAPI.
– Current status.

● Conclusions

Agenda

int happy_array[10];

Arrays in C and The Land of Possibilities

● Contiguously allocated objects of the same element type.
● We can iterate over it through indexes from 0 to N - 1, where N

is the maximum number of elements in the array.

Arrays in C and The Land of Possibilities

int happy_array[10];
indexes: [0-9]

● Contiguously allocated objects of the same element type.
● We can iterate over it through indexes from 0 to N - 1, where N

is the maximum number of elements in the array.
● However, C doesn’t enforce array’s boundaries.
● It’s up to the developers to enforce them.

Arrays in C and The Land of Possibilities

int happy_array[10];
indexes: [0-9]

● Contiguously allocated objects of the same element type.
● We can iterate over it through indexes from 0 to N - 1, where N

is the maximum number of elements in the array.
● However, C doesn’t enforce array’s boundaries.
● It’s up to the developers to enforce them.
● Otherwise, you arrive in The Land of Possibilities (a.k.a. UB).

Arrays in C and The Land of Possibilities

int happy_array[10];
indexes: [0-9]

miserable_array[-1]

Arrays in C and The Land of Possibilities

Trailing arrays in the kernel
– Arrays declared at the end of a structure.

Trailing arrays

struct trailing {
...
some members;
int happy_array[10];

};

● Usually blobs of raw data (of any type).
● Space is allocated at run-time.
● Their contents are usually described through a header.
● drivers/firmware/google/vpd.c:30:

Trailing arrays as Variable Length Objects (VLOs)

struct vpd_cbmem {
 u32 magic;
 u32 version;
 u32 ro_size;
 u32 rw_size;
 u8 blob[];
};

– Flexible array
● Trailing array as VLO.
● Total size is determined at run-time.

– Flexible structure
● Structure that contains a flexible array.

Flexible arrays & flexible structures

struct flex_struct {
...
size_t count;
struct foo flex_array[];

};

Flexible-array variants

Ambiguous flex-array declarations.
– Fake flexible arrays.

● One-element arrays.
● Zero-length arrays.

– True flexible arrays.
● “Modern” C99 flexible-array member.

Flexible-array variants

Ambiguous flex-array declarations.
– Fake flexible arrays.

● One-element arrays (buggy hack).
● Zero-length arrays (GNU extension).

– True flexible arrays.
● “Modern” C99 flexible-array member.

Flexible-array variants

Ambiguous flex-array declarations.
– Fake flexible arrays.

● One-element arrays (buggy hack).
● Always “contributes” with sizeof-one-element to the size

of the enclosing structure.
● Potential source of off-by-one bugs.

Flexible-array variants

struct ancient {
...
size_t count;
struct foo anxious_array[1];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * (p->count - 1);
alloc_size = struct_size(p, anxious_array, p->count - 1);

Ambiguous flex-array declarations.
– Fake flexible arrays.

● Need to audit every use of sizeof(*p)
● Is struct ancient being used inside another struct?
● Need to audit every use of sizeof(struct foo)
● Does the original code contains OBO issues?

Flexible-array variants

struct ancient {
...
size_t count;
struct foo anxious_array[1];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * (p->count - 1);
alloc_size = struct_size(p, anxious_array, p->count - 1);

Ambiguous flex-array declarations.
– Fake flexible arrays.

● Zero-length arrays (GNU extension).
● They don’t contribute to the size of the flex struct.
● Slightly less buggy, but still...

Flexible-array variants

struct old {
…
size_t count;
struct foo unhappy_array[0];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * p->count;
alloc_size = struct_size(p, unhappy_array, p->count);

Ambiguous flex-array declarations.
– True flexible arrays.

● Flexible-array member (C99).
● The last member of an otherwise non-empty structure.
● The compiler enforces this (unlike in the case of [1] & [0])

Flexible-array variants

struct modern {
...
size_t count;
struct foo happy_array[];

} *p;

alloc_size = sizeof(*p) + sizeof(struct foo) * p->count;
alloc_size = struct_size(p, happy_array, p->count);

sizeof() & The Tale of the Three Trailing Arrays.
Problems with ambiguous flexible-array variants

sizeof() & The Tale of the Three Trailing Arrays.
Problems with ambiguous flexible-array variants

sizeof(flex_struct->one_element_array) == size-of-element-type

sizeof() & The Tale of the Three Trailing Arrays.
Problems with ambiguous flexible-array variants

sizeof(flex_struct->one_element_array) == size-of-element-type

sizeof(flex_struct->zero_length_array) == 0

sizeof() & The Tale of the Three Trailing Arrays.
Problems with ambiguous flexible-array variants

sizeof(flex_struct->one_element_array) == size-of-element-type

sizeof(flex_struct->zero_length_array) == 0

sizeof(flex_struct->flex_array_member) == ? /* Error */

sizeof() & The Tale of the Three Trailing Arrays.
● sizeof() returns different results.
● And that’s another source of problems.
● Found multiple issues in the kernel.

Problems with ambiguous flexible-array variants

sizeof(flex_struct->one_element_array) == size-of-element-type

sizeof(flex_struct->zero_length_array) == 0

sizeof(flex_struct->flex_array_member) == ? /* Error */

The Land of Possibilities. ;-)
Problems with ambiguous flexible-array variants

The Land of Possibilities. :-)
● First flexible array transformation in the KSPP.
● 76497732932f ("cxgb3/l2t: Fix undefined behaviour")

Problems with ambiguous flexible-array variants

https://git.kernel.org/linus/76497732932f

The Land of Possibilities. :-)
● First flexible array transformation in the KSPP.
● 76497732932f ("cxgb3/l2t: Fix undefined behaviour")
● Bug introduced in 2011. Fixed in 2019.

Problems with ambiguous flexible-array variants

https://git.kernel.org/linus/76497732932f

Ambiguity is the enemy.

Problems with ambiguous flexible-array variants

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations

● Directly indexing flexible arrays is not uncommon.
● We had to fix multiple out-of-bounds issues in fake

flexible arrays ([0] and [1] trailing arrays).
● Of course, almost all of them were false positives.
● However, they needed to be fixed before enabling

-Warray-bounds.

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations
– Some examples:

● This one very simple and straight-forward.
● Commit c1e4726f465440

https://git.kernel.org/linus/c1e4726f465440

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations
– Some examples:

● Others a bit more elaborate.
● Commit 39107e8577ad

https://git.kernel.org/linus/39107e8577ad

Gaining bounds-checking on trailing arrays
-Warray-bounds and flexible-array transformations
– Some examples:

● Others a bit more elaborate.
● Commit 39107e8577ad

https://git.kernel.org/linus/39107e8577ad

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Common use of memcpy() and flex arrays.

struct flex_struct {
...
size_t count;
struct foo flex_array[];

} *p;

...

memcpy(p->flex_array, &source, SOME_SIZE);

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Uses __builtin_object_size() to determine the size of both

source and destination.
– Under CONFIG_FORTIFY_SOURCE=y

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

__builtin_object_size(flex_struct->flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 if cannot determine the size of the object.
● The size of a flexible-array member cannot be

determined (it’s an object of incomplete type).

__builtin_object_size(flex_struct->flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 if cannot determine the size of the object.
● The size of a flexible-array member cannot be

determined (it’s an object of incomplete type).

OK; but what about fake flexible arrays?
Those do have a size.

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.

__builtin_object_size(flex_struct->one_element_array, 1) == -1

__builtin_object_size(flex_struct->zero_length_array, 1) == -1

__builtin_object_size(flex_struct->flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.
● A bit confusing, isn’t it?

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all three cases.
● It doesn’t know the size of the fake flex arrays either.
● A bit confusing, isn’t it?

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

__builtin_object_size(any_struct->any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

What is going on?!

__builtin_object_size(any_struct->any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

memcpy() is not currently able to sanity-
check trailing arrays at all.

__builtin_object_size(any_struct->any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

A case for:
“Go fix the compiler!”

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all trailing arrays.
● Definitely need to fix the compiler. :-/

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

__builtin_object_size(any_struct->any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

● Returns -1 for all trailing arrays.
● Definitely need to fix the compiler. :-/
● sizeof() is the only sane one. :-)

__builtin_object_size(flex_struct->one_element_array, 1) == -1
__builtin_object_size(flex_struct->zero_length_array, 1) == -1
__builtin_object_size(flex_struct->flex_array_member, 1) == -1

sizeof(flex_struct->one_element_array) == size-of-element-type
sizeof(flex_struct->zero_length_array) == 0
sizeof(flex_struct->flex_array_member) == ? /* Error */

__builtin_object_size(any_struct->any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays

Wait. But why, exactly?

__builtin_object_size(any_struct->any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays
– BSD sockaddr (sys/socket.h)

● char sa_data[14]
● #define SOCK_MAXADDRLEN 255

/*
 * Structure used by kernel to store most
 * addresses.
 */
struct sockaddr {

unsigned char sa_len; /* total length */
sa_family_t sa_family; /* address family */
char sa_data[14]; /* actually longer; address value */

};
#define SOCK_MAXADDRLEN 255 /* longest possible addresses */

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flexible arrays
– https://reviews.llvm.org/D126864

“Some code consider that trailing arrays are flexible, whatever their size.
Support for these legacy code has been introduced in
f8f632498307d22e10fab0704548b270b15f1e1e but it prevents evaluation of
builtin_object_size and builtin_dynamic_object_size in some legit cases.”

https://reviews.llvm.org/D126864

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flex arrays.

So, what do we do?

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flex arrays. What do we do?

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– __builtin_object_size() and flex arrays. What do we do?

● Make flexible-array declarations unambiguous.
● Fix the compiler:

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=101836

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Kernel: Make flexible-array declarations unambiguous.

● Get rid of fake flexible arrays.
● Only C99 flexible-array members should be used as

flexible arrays.

Gaining bounds-checking on trailing arrays
Hardening memcpy() and flexible-array transformations
– Kernel: Make flexible array declarations unambiguous.

● Get rid of fake flexible arrays.
● Only C99 flexible-array members should be used as

flexible arrays.
– Compiler: Fix it.

● Fix __builtin_object_size()
● Add new option -fstrict-flex-arrays[=n]

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1

● -fsfa=1 → Only [1], [0] and [] are treated as flex arrays.
● __bos(flex_struct→one_element_array, 1) == -1
● __bos(flex_struct→zero_length_array, 1) == -1
● __bos(flex_struct→flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1

● -fsfa=1 → Only [1], [0] and [] are treated as flex arrays.
● __bos(flex_struct→one_element_array, 1) == -1
● __bos(flex_struct→zero_length_array, 1) == -1
● __bos(flex_struct→flex_array_member, 1) == -1

● -fsfa=2 → Only [0] and [] are treated as flex arrays.
● __bos(flex_struct→zero_length_array, 1) == -1
● __bos(flex_struct→flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
-fstrict-flex-arrays[=n] – Supported in GCC-13 and Clang-16.

● -fsfa=0 → All trailing arrays are treated as flex arrays.
● __bos(flex_struct→any_trailing_array, 1) == -1

● -fsfa=1 → Only [1], [0] and [] are treated as flex arrays.
● __bos(flex_struct→one_element_array, 1) == -1
● __bos(flex_struct→zero_length_array, 1) == -1
● __bos(flex_struct→flex_array_member, 1) == -1

● -fsfa=2 → Only [0] and [] are treated as flex arrays.
● __bos(flex_struct→zero_length_array, 1) == -1
● __bos(flex_struct→flex_array_member, 1) == -1

● -fsfa=3 → Only [] is treated as flex array. (GCC only).
● __bos(flex_struct→flex_array_member, 1) == -1

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

When will we have nice things?

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
– Need to finish transforming ALL fake flexible arrays into

flexible-array members.
– Need to enable -fstrict-flex-arrays=3
– Then memcpy() will be finally able check for out-of-bounds

on trailing arrays and ALL arrays of fixed size.

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
– Need to finish transforming ALL fake flexible arrays into

flexible-array members.
– Need to enable -fstrict-flex-arrays=3
– Then memcpy() will be finally able check for out-of-bounds

on trailing arrays and ALL arrays of fixed size. Yeeeii!!! :-)

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

OK. Now we know how to gain
bounds-checking on trailing

arrays of fixed size. :)

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3

And what about bounds-checking on
flexible-array members?

Gaining bounds-checking on trailing arrays
Fortified memcpy() and -fstrict-flex-arrays=3
– We need a new attribute.
– __attribute__((__element_count__(member))) ?

struct bounded_flex_struct {
 ...
 size_t elements;
 struct foo flex_array[]

__attribute__((__element_count__(elements)));
};

The case of UAPI

The case of UAPI
One-element arrays in UAPI – First attempts.
– Duplicate the original struct within a union.
– Flexible-array will be used by kernel-space.
– One-element array will be used by user-space.

 struct ip_msfilter {
- __be32 imsf_multiaddr;
- __be32 imsf_interface;
- __u32 imsf_fmode;
- __u32 imsf_numsrc;
- __be32 imsf_slist[1];
+ union {
+ struct {
+ __be32 imsf_multiaddr_aux;
+ __be32 imsf_interface_aux;
+ __u32 imsf_fmode_aux;
+ __u32 imsf_numsrc_aux;
+ __be32 imsf_slist[1];
+ };
+ struct {
+ __be32 imsf_multiaddr;
+ __be32 imsf_interface;
+ __u32 imsf_fmode;
+ __u32 imsf_numsrc;
+ __be32 imsf_slist_flex[];
+ };
+ };
 };

The case of UAPI
One-element arrays in UAPI – Better code.
– Just use the __DECLARE_FLEX_ARRAY() helper in a union.

struct ip_msfilter {
 __be32 imsf_multiaddr;
 __be32 imsf_interface;
 __u32 imsf_fmode;
 __u32 imsf_numsrc;
 union {
 __be32 imsf_slist[1];
 __DECLARE_FLEX_ARRAY(__be32, imsf_slist_flex);
 };
};

The case of UAPI
One-element arrays in UAPI – Better code.
– Just use the __DECLARE_FLEX_ARRAY() helper in a union.
– The bad news is that the sizeof(flex_struct) will remain the

same.

struct ip_msfilter {
 __be32 imsf_multiaddr;
 __be32 imsf_interface;
 __u32 imsf_fmode;
 __u32 imsf_numsrc;
 union {
 __be32 imsf_slist[1];
 __DECLARE_FLEX_ARRAY(__be32, imsf_slist_flex);
 };
};

Flexible array transformations in the Linux kernel
Current status

● Zero-length arrays mostly transformed (including UAPI).
● However, we cannot prevent new ones from being

introduced. Please, don’t introduce them. :)
● One-element arrays are still in progress.
● Auditing them demand a lot more work and time.
● Need to make sure there are no important differences

between executables (before and after changes).
● objdump, Ghidra, BinDiff and custom diffing tools

to the rescue.

Flexible arrays transformations in the Linux kernel
Conclusions

● We need to remove problematic ambiguity from the kernel.
● Flexible-array transformations together with

-fstrict-flex-arrays=3 are an important step forward.
● The security of the kernel can be significantly improved.
● Vulnerabilities discovered over the last years could’ve

been prevented with the most recent memcpy() and
FORTIFY_SOURCE updates.

● We have a clear vision about how to gain
bounds-checking on ALL trailing arrays, fixed and flexible.

Thank you! :)

Gustavo A. R. Silva
gustavoars@kernel.org

@embeddedgus

mailto:gustavoars@kernel.org
https://twitter.com/embeddedgus

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

